MINIMAXNESS PROPERTIES OF EXTENSION FUNCTORS OF LOCAL COHOMOLOGY MODULES
نویسندگان
چکیده
منابع مشابه
Extension functors of local cohomology modules
Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...
متن کاملExtension functors of generalized local cohomology modules and Serre subcategories
In this paper we present several results concerning the cofiniteness of generalized local cohomology modules.
متن کاملextension functors of local cohomology modules
let $r$ be a commutative noetherian ring with non-zero identity, $fa$ an ideal of $r$, and $x$ an $r$--module. here, for fixed integers $s, t$ and a finite $fa$--torsion $r$--module $n$, we first study the membership of $ext^{s+t}_{r}(n, x)$ and $ext^{s}_{r}(n, h^{t}_{fa}(x))$ in the serre subcategories of the category of $r$--modules. then, we present some conditions which ensure the exi...
متن کاملARTINIANNESS OF COMPOSED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring and let $fa$, $fb$ be two ideals of $R$ such that $R/({fa+fb})$ is Artinian. Let $M$, $N$ be two finitely generated $R$-modules. We prove that $H_{fb}^j(H_{fa}^t(M,N))$ is Artinian for $j=0,1$, where $t=inf{iin{mathbb{N}_0}: H_{fa}^i(M,N)$ is not finitelygenerated $}$. Also, we prove that if $DimSupp(H_{fa}^i(M,N))leq 2$, then $H_{fb}^1(H_{fa}^i(M,N))$ i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Algebra
سال: 2015
ISSN: 1306-6048
DOI: 10.24330/ieja.266214