MINIMAXNESS PROPERTIES OF EXTENSION FUNCTORS OF LOCAL COHOMOLOGY MODULES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension functors of local cohomology modules

Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...

متن کامل

Extension functors of generalized local cohomology modules and Serre subcategories

In this paper we present several results concerning the cofiniteness of generalized local cohomology modules.

متن کامل

extension functors of local cohomology modules

let $r$ be a commutative noetherian ring with non-zero identity, $fa$ an ideal of $r$, and $x$ an $r$--module. here, for fixed integers $s, t$ and a finite $fa$--torsion $r$--module $n$, we first study the membership of $ext^{s+t}_{r}(n, x)$ and $ext^{s}_{r}(n, h^{t}_{fa}(x))$ in the serre subcategories of the category of $r$--modules. then, we present some conditions which ensure the exi...

متن کامل

ARTINIANNESS OF COMPOSED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring and let $fa$, $fb$ be two ideals of $R$ such that $R/({fa+fb})$ is Artinian. Let $M$, $N$ be two finitely generated $R$-modules. We prove that $H_{fb}^j(H_{fa}^t(M,N))$ is Artinian for $j=0,1$, where $t=inf{iin{mathbb{N}_0}: H_{fa}^i(M,N)$ is not finitelygenerated $}$. Also, we prove that if $DimSupp(H_{fa}^i(M,N))leq 2$, then $H_{fb}^1(H_{fa}^i(M,N))$ i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Electronic Journal of Algebra

سال: 2015

ISSN: 1306-6048

DOI: 10.24330/ieja.266214